The Checkers

v 1.0

Gorka Suarez Garcia & Enrique Lépez Mafias

1.- A brief introduction.

Checkers game is a checkers version, developed threlelaskell platform for
WindowsWinHugs. It uses a minimax logic for the machine movemenith alpha-
beta pruning. Distinguishing scope between difficidvels has been enhanced, and a
minimal text interface has been implemented tovitian.

2.- What is Checkers? (from Wikipedia)

English draughts, also called American checkefstoaight checkers”, commonly
called checkers in the U.S., but commonly callealights in some other countries, is a
form of the draughts board game played on an 8&8dowith 12 pieces on each side
that may only move and capture forward.

The rules

As in all draughts variants, English draughts &ypt by two people, on opposite sides
of a playing board, alternating moves. One player diark pieces, and the other has
light pieces. Pieces move diagonally and piecésebpponent are captured by
jumping over them.

The rules of this variant of draughts are:

* Board The board is an 8x8 grid, with altemgtdark and light squares, called a
checkerboard (in the US, in reference to its chestkpattern, also the source of the
name checkers). The playable surface consisted2ldark squares only. A
consequence of this is that, from each player'speetive, the left and right corners
encourage different strategies.

* Pieces The pieces are usually made of woaddaa@ flat and cylindrical. They are
invariably split into one darker and one lightelocoTraditionally, these colors are red
and white. There are two kinds of pieces: "men" '&mgs". Kings are differentiated as
consisting of two normal pieces of the same caltacked one on top of the other.
Often indentations are added to the pieces totaaking.

* Starting Position Each player starts withdl@ces on the three rows closest to their
own side, as shown in the diagram. The row clasesach player is called the
"crownhead" or "kings row". The black (darker cQlside moves first.

* How to Move There are two ways to move a piessmply sliding a piece
diagonally forwards (also diagonally backwardshe tase of kings) to an adjacent and
unoccupied dark square, or "jumping" one of theomgmt's pieces. In this case, one
piece "jumps over" the other, provided there iseant square on the opposite side for
it to land on. Again, a man (uncrowned piece) caly ump diagonally forwards, and a
king can also move diagonally backwards. A piee ihjumped is captured and
removed from the board. Multiple-jump moves aresgas if, when the jumping piece
lands, there is another piece that can be jumpedpihg is mandatory and cannot be
passed up to make a non-jumping move, nor can fehaerthe maximum jumps
possible be taken in a multiple-jump move. Whemedhg more than one way for a
player to jump, one may choose which sequence ke nmet necessarily the sequence

that will result in the most amount of captureswidger, one must make all the captures
in that sequence. (Under traditional draughts ruleging is not mandatory. If it is not
done, the opponent may either force the move tebersed, huff the piece or carry on
regardless.)

* Kings If a player's piece moves into the larrgw on the opposing player's side of
the board, that piece is said to be "crowned" {tano’kinged" in the US), becoming a
"king" and gaining the ability to move both forwardnd backwards. If a player's piece
jumps into the kings row, the move terminatesdirmot jump out (as in a multiple-
jump move) until that move has ended and the pgesebeen crowned).

* How the Game Ends A player wins by capturtigpf the opposing player's pieces,
or by leaving the opposing player with no legal esv

In tournament English draughts, a variation callede-move restriction is preferred.
The first three moves are drawn at random front afseccepted openings. Two games
are played with the chosen opening, each playanbavturn at either side. This tends
to reduce the number of draws and can make for exaiing matches. Three-move
restriction has been played in the United Statesngionship since 1934. A two-move
restriction was used from 1900 until 1934 in thetebh States and in the British Isles
until the 1950s. Before 1900, championships weagga without restriction: this style
is called go-as-you-please (GAYP).

One rule of long standing that has fallen out @bfas the "huffing” rule. In this
variation, jJumping is not mandatory, but a pieca ttould have jumped, but failed to do
so, may be taken — or "huffed" — by the opposirayet at the beginning of his or her
next turn. After huffing the offending piece, theponent then takes his or her turn as
normal. Huffing has been abolished by both the Acaer Checker Federation and the
English Draughts Association.

Three common misinterpretations of the rules are,

* that the game ends in a draw when a playsmiadegal move but still pieces
remaining (true in Chess but not in draughts, taernate)

* that capturing with a king precedes captumvith a regular piece

* a piece which in the current move has becarking can then in the same move go
on to capture other pieces

3.- An approach over the game

Checkers 1.0 uses thernel concept to represents the current state of thiicagipn.
This means the last command being executed, the lsdaation and so on. Kernel
changes whenever a new command is introducedhstaplication (typically, a new
movement is made by the player)

Game has been divided in two main sections:

3.1.- Console

Composed by other two file€pnsole.hs andUtils.hs. This group of files manages
whatever is related with the Console displayindfsts is expectable by its own name.
We will make a further analysis over this files:

3.1.1.- Console.hs

Composed by the following functions and types:

Types:

 Command: This type defines the set of command we use igdmee. Possible
command’s values can ndHelp, CmdLookBoard, CmdNewGame PColor Level,
CmdRestart, CmdExit, CmdMove Position Position, CmdNone

» Kernel: Represents the current state of the full applicafidne status is represented
by a combination of th&ame Data and the lastnovement.

Functions:

» initKernel: This function simply gives us an initialized kelne
+ checkCommand:Checks if the line is a certain command, anddftitie the
function will return the command inside value. Tieader of this function is

checkCommand::String -> String -> Command -> Comman d

* checkCommandEx:Very similar function to the last one. We only exdehe
functionality to accept one more value. The heler

checkCommand::String -> String -> Command -> Comman d

» parcePieceColor:Gets a PieceColor from a string. By default, valulebe White.
The header of the function is:

parsePieceColor::String -> PColor

» parselLevel:Gets a Level from a string. By default, value Wil Easy. The header
of the function is:

parseLevel::String -> Level

» getStrPieceColor:This time, we will transform a string into a Piec#@. The
header of the function is:

getStrPieceColor::PColor -> String

» getStrLevel: Gets a string from a Level. The header of this fiomcis:

getStrLevel::Level -> String

parsePosition:Gets a BoardPosition from a string. This functisesithe help of
the auxiliary functiorparsePositionEx. The header of this function is:

parsePosition::String -> Position

parsePositionEx:Auxiliary function of parsePosition, used to g&8@ardPosition
from a string.. The header of this function is:

parsePositionEx::String -> String -> Position -> Po sition

getStrCmdNew3: Get a string like "new <level> game" from a Commaiithe
header of this function is:

getStrCmdNew3::Command -> String

getStrCmdNew4: Get a string like "new game with <color>" from ar@mand.
The header of this function is:

getStrCmdNew4::Command -> String

getStrCmdNew5: Get a string like "new <level> game with <color¥8ih a
Command. The header of this function is:

getStrCmdNew5::Command -> String

checkCmdNewEx3:Checks if the line is a new game command, antifrile the
function will return the command inside value.Theader of this function is:

checkCmdNewEx3::String -> Command

checkCmdNewEx4:Checks if the line is a new game command, antsifrile the
function will return the command inside value. Header of this function is:

checkCmdNewEXx4::String -> Command

checkCmdNewEx5:Checks if the line is a new game command, antifrile the
function will return the command inside value. Header of this function is:

checkCmdNewEX5::String -> Command

checkCmdNew:Checks if the line is a new game command, antsifrile the
function will return the command inside value. Header of this function is:

checkCmdNew::String -> Command

getStrLevel: Gets a string from a Level. The header of this fiomcis:

getStrLevel::Level -> String

checkCmdMovEx: Checks if the line is a move command, and if itie the
function will return the command inside value. Header of this function is:

checkCmdMovEXx::String -> Int -> Command

checkCmdMov: Checks if the line is a move command, and if itie the function
will return the command inside value. The headeahisffunction is:

checkCmdMov::String -> Command
parseCmd: Gets a Command from a string.. The header of timstion is:
parseCmd::String -> Command

getCmd: Gets a Command from a string.. The header of tinstfon is:

getCmd::Kernel -> 10 Kernel

doCmdHelp: Shows the help of the game (all the informatioatedl to the game’s
commands, and some examples of use. The headwas ddimction is:

doCmdHelp::Kernel -> 10 Kernel
printSquare: Prints the value of a square on screen.. The heddleis function is:
printSquare::Square -> 10 ()

printHBorderLn: Prints the upper and bottom horizontal border. figsder of this
function is:

printHBorderLn::10 ()

printHNumbersLn: Prints the horizontal numbers of the columns. Téader of
this function is:

printHNumbersLn::10 ()

printHSeparator: Prints the horizontal separator between squarés.h€ader of
this function is:

printHSeparator::10 ()

printHSeparatorLn: Prints the horizontal separator between squarés. h€ader
of this function is:

printHSeparatorLn::10 ()

printBoardCols: Prints the columns of a row.. The header of thifion is:

printBoardCols::Board -> Int -> Int -> 10 ()

printBoardRow: Prints a row of squares.. The header of this fonas:

printBoardRow::Board -> Int -> 10 ()

printBoardRowLn: Prints the upper and bottom horizontal border. Aidwder of
this function is:

printBoardRowLn::Board -> Int -> 1O ()
printBoardRows: Prints some rows of the board.. The header offtimstion is:

printBoardRows::Board -> Int -> 10 ()

doCmdLookBoard: Shows on screen the current board of the gamehd@ader of
this function is:

doCmdLookBoard::Kernel -> 10 Kernel

doCmdNewGame:Starts a new game with a new configuration.. Tregbeof this
function is:

doCmdNewGame::Kernel -> O Kernel

doCmdRestart: Starts a new game with the current configuratibhe header of
this function is:

doCmdRestart::Kernel -> 10 Kernel

getMoveError: Gets the string that explains the last error inoaen The header of
this function is:

getMoveError::Int -> String

doCmdMove: Executes a player's move inside the board.. Thednex this
function is:

doCmdMove::Kernel -> 10 Kernel

doCmdError: Shows an error if the user puts an invalid commarite header of
this function is:

doCmdError::Kernel -> 10 Kernel

doCmdEx: Executes the last command introduced.. The heddkrs function is:
doCmdEx::Kernel -> Command -> 10 Kernel

doCmd: Executes the last command introduced. The headérsofunction is:

doCmd::Kernel -> 10 Kernel

e mainLoop: This is the main loop of the game. The headerisfftmction is:

mainLoop::Kernel -> 10 ()

3.1.2.- Utils.sh

Composed by the following functions:

Functions:

dropTokenEx: Drops the first token inside the string.. The headehis function is

dropTokenEx::String -> Int -> String

» dropToken: Drops the first token inside the string.. The heaste
dropToken::String -> String

* getToken: Gets a token inside the string.. The header is:
getToken::String -> Int -> String

* getTokens:Gets a some tokens inside the string. The header is
getTokens::String -> Int -> String

» countTokensEx:Gets the number of tokens inside the string. Tlaeléeis:
countTokensEx::String -> Int -> Int

» countTokens:Gets the number of tokens inside the string. Thelérea:
countTokens::String -> Int

» getTokenPositionEx:Gets the position of a token inside the text. Thedee is:
getTokenPositionEx::String -> String -> Int -> Int

» getTokenPosition:Gets the position of a token inside the text. Teader is:
getTokenPosition::String -> String -> Int

» checkText: Checks if some tokens inside "text" are equal tod’t The header is:
checkText::String -> String -> Int -> Bool

» isDigit: Checks if the character is a digit. The header is:

isDigit:: Char -> Bool

quitSpacesEx:Erases the redundant blank spaces in a stringh@haer is:
quitSpacesEx::String -> Bool -> String

quitSpaces:Erases the redundant blank spaces in a string.ddwdehn is:
quitSpaces::String -> String

isDigit: Checks if the character is a digit. The header is:

isDigit:: Char -> Bool

3.2.- Game

Composed by other two fileBata.hs andLogic.hs.

3.2.1.- Data.hs

Composed by the following functions and types:

Types:

PColor: This new type is to define the color of a piecesdtle PColor’s values
can beWhite andBlack.

PType: This new type is to define the type of a piecenmaror king. The main
difference between the types is the movement option

Piece:This represents the data of a piece: the colotlaatype.

Square: This new type is to define the state of a squatbe board of the game.
There are only three options: an empty squareyarsgvith a piece or a square that
is not usable in the game.

Position: This represents a position inside the board.

BoardRow: This represents a file in the board of the game.

Board: This represents the board of the game.

Level: This new type is to define the difficulty in thame. Possible values can be
Easy, Medium or Hard.

Config: This represents the current configuration ofgame.

LastMove: This represents the las move of the IA.

GameData This represents the current state of the whabeega

Functions:

initBoardRow: This gives an initialized BoardRow. The headetheg function is:

initBoardRow::Square -> Int -> BoardRow

initBoardSquares: This gives an initialized fragment of a Board. Teader of this
function is

initBoardSquares::Square -> Int -> Board

initBoard: This gives an initialized Board. The header is:

initBoard::Board

checkLimits: Checks if the coordinates are inside the board.hEaeler of the
function is:

checkLimits::Int -> Int -> Bool

checkEvenLimits: Checks if the coordinates are an even square. &aeeh of the
function is:

checkEvenLimits::Int -> Int -> Bool

checkOddLimits: Checks if the coordinates are an odd square. Theéenhef the
function is:

checkOddLimits::Int -> Int -> Bool

getBoardCol: Gets a square inside a BoardRow value.. The heddlee function
Is:

getBoardCol::BoardRow -> Int -> Square

getBoardRow: Gets a row inside a Board value. The header ofuthetion is:

getBoardRow::Board -> Int -> BoardRow

getBoardSquare:Gets a square inside a Board value. The headbedtihction is:
getBoardSquare::Board -> Int -> Int -> Square

setBoardCol: Sets a square inside a BoardRow value. The heatles unction is:

setBoardCol::BoardRow -> Int -> Square -> BoardRow

setBoardRow: Sets a square inside a Board value. The headke dfihction is:

setBoardRow::Board -> Int -> Int -> Square -> Board

setBoardSquare:Sets a square inside a Board value. The headke dfihction is:

setBoardSquare::Board -> Int -> Int -> Square -> Bo ard

initLastMove: This gives an initialized LastMove. The headerhaf tunction is:

initLastMove::LastMove

10

initConfig: This gives an initialized Config. The header of thection is:
initConfig::Config
initGameData: This gives an initialized GameData. The headehefftinction is:

initGameData::GameData

initConfig: This gives an initialized Config. The header of thwection is:

initConfig::Config

3.2.2.- Logic.hs

Composed by the following functions and types:

Types:

Vector: This represents a vector inside the board. It spmmsed by a couple of
integer values.

RelCoords: This represents a relative coordinates insiddtad. It is composed
by a couple of integer values.

NodePiece This represents a piece and all its posible mdvéscomposed by the
position and the tree with all the possible values.

TreeMoves: This new type is to create a tree with all the nsowea turn.

Functions:

checkSquareColor:Checks if a square have a piece with the same. cidhe
header of this function is:

checkSquareColor::Square -> PColor -> Bool

validateOrigin: Validates that the origin position is a piece @iayer. The header
of this function is

validateOrigin::Board -> PColor -> Position -> Bool

getVector: Gets a directional vector from a relative coord#saflhe header of this
function is:

initBoard::Board

getPrevSquare:Gets the previous square to the destination dihe. header of the
function is:

getPrevSquare::Board -> Position -> (Int, Int) -> S quare

11

validateEnemyPrevSquare:Checks if the next square have an enemy we want to
kill. The header of the function is:

validateEnemyPrevSquare::PColor -> Square -> Bool

validateNormalMoveEXx: Validates the move that a normal piece wants talte.
header of the function is:

validateNormalMoveEXx::Board -> PColor -> Position - > Position ->
(Int, Int) -> Bool

validateNormalMove: Validates the move that a normal piece wants tdr'tle
header of the function is:

validateNormalMove::Board -> PColor -> Position -> Position -> Bool

countPieces: Counts the enemy pieces between the origin anddsination.. The
header of the function is:

countPieces::Board -> PColor -> Vector -> Position -> Position ->
Int -> Int

validateKingMove: Validates the move that a king piece wants to de Aeader
of the function is:

validateKingMove::Board -> PColor -> Position -> Po sition -> Bool

validateMoveEXx: Validates the move the player wants to do. The éeafithe
function is:

validateMoveEx::PType -> Board -> PColor -> Positio n -> Position -
>wBool

validateMove: Validates the move the player wants to do. The éeafithe
function is:

validateMove::Board -> Position -> Position -> Bool
killPiece: We kill a piece. The header of the function is:
killPiece::Board -> Vector -> Position -> Position -> Board

makeMove: This gives an initialized LastMove. The headerhaf tunction is:

makeMove::Board -> Position -> Position -> Board

getAlINormalMoves: Gets all the moves of a normal piece. The heaidireo
function is:

getAllNormalMoves::PColor -> [RelCoords]

getAllKingMoves: Gets all the moves of a king piece.. The headénefunction
is:

getAllKingMoves::[RelCoords]

12

getAllMoves: Gets all the moves of a piece.. The header ofuthetion is:

getAllMoves::PType -> PColor -> [RelCoords]

getRelCoords:Gets a relative coordinates from a move. The heafdde function
Is:

getRelCoords::Position -> Position -> RelCoords

calcPrevSquare:Gets the position of the previous square to thérdesThe header
of the function is:

calcPrevSquare::Position -> Vector -> Position

checkSquareColor:Checks if a square have a piece with the same.cither
header of the function is:

checkSquareColor::Square -> PColor -> Bool

checkEnemySquare:Checks if the square have an enemy piece. Theeheéthe
function is:

checkEnemySquare::PColor -> Square -> Bool

transformSquare: This transforms a normal piece into a king. Thadee of the
function is:

transformSquare::Square -> Position -> Square

makeMove: Moves a piece from an origin to a destination. fibader of the
function is:

makeMove::Board -> Position -> Position -> Board

getAllIBoardPositions: Gets all the board positions. The header of thetfan is:

getAllBoardPositions::[Position]

countTotalPiecesEx:Counts the total number of pieces of a color. isader of
the function is:

countTotalPiecesEx::Board -> PColor -> PType -> Int

countTotalPieces:Counts the total number of pieces of a color. iader of the
function is:

countTotalPieces::Board -> PColor -> Int

getAllPieceMovesEx:Gets all the posible moves of a piece. The heaidkre
function is:

getAllPieceMovesEx::Board -> Position -> Square -> [(Position,
Position)]

13

getAllPieceMoves:Gets all the posible moves of a piece. The heaididxe function
is:

getAllPieceMoves::Board -> Position -> [(Position, Position)]

oppColor: Gets the opposite color. The header of the funagto

oppColor::PColor -> PColor

killNormalCondition: Gets if a normal piece can check the stillKillMove
condition. The header of the function is:

killNormalCondition::Position -> Position -> Square -> Bool

stillKillMove: Gets if a piece can still move to kill an enemige header of the
function is:

stillKillMove::Board -> PColor -> Position -> Posit ion -> Bool

evalColorSide: Calculates the value of a color side. The heafifrecfunction is:

evalColorSide::Board -> PColor -> Int

evalBoardBlack: Evaluator for the computer when the player istifaek side. The
header of the function is:

evalBoardBlack::Board -> Int

evalBoardWhite: Evaluator for the computer when the player iswhée side. The
header of the function is:

evalBoardWhite::Board -> Int

getPiecesPositionsGets all the positions of the pieces of a coltre fieader of the
function is:

getPiecesPositions::Board -> PColor -> [Position]

getNodeNextKill: Gets all the kill moves inside a list of nodeseTieader of the
function is:

getNodeNextKill::Board -> PColor -> Position -> [Tr eeMoves]

getNodeNextKillEx: Gets all the kill moves inside a list of nodeseTeader of the
function is:

getNodeNextKillEx::Board -> PColor -> Position -> P osition ->
[TreeMoves]

getNodeNextAll: Gets all the moves inside a list of nodes. Thelbeaf the
function is:

getNodeNextAll::Board -> PColor -> Position -> [Tre eMoves]

14

getNodePieceGets all the node pieces in the root of the {fée. header of the
function is:

getNodePiece::Board -> PColor -> [Position] -> [Nod ePiece]

getTreeMoves:Gets a tree with all the moves in this turn. Thader of the
function is:

getTreeMoves::Board -> PColor -> TreeMoves

getNodeTotalMoves:Gets the total number of moves from a NodePiehe. T
header of the function is:

getNodeTotalMoves::NodePiece -> Int

getTreeTotalMoves:Gets the total number of moves from a TreeMovidze.
header of the function is:

getTreeTotalMoves:: TreeMoves -> Int

getMoveFromNodes:Gets a move from a node of a TreeMoves. The heddbe
function is:

getMoveFromNodes::[TreeMoves] -> Int -> [Position] -> [Int] ->
[Position]

getMoveFromNodePiecesGets a move from a NodePiece of a TreeMoves. The
header of the function is:

getMoveFromNodePieces::[NodePiece] -> Int -> [Int] -> [Position]

getMoveFromRoot: Gets a move from the root of a TreeMoves. The éeafithe
function is:

getMoveFromRoot::TreeMoves -> Int -> [Position]

getMoveFromTree: Gets a move from a TreeMoves. The header of thetifan is:

getMoveFromTree:: TreeMoves -> Int -> [Position]

initialAlpha: A constant for the initial alpha in the minimagaidithm. By default,
the value is -1000000. The header of the funcson i

initialAlpha::Int

initialBeta: A constant for the initial beta in the minimax@ighm. By default, the
value is -1000000. The header of the function is:

initialBeta::Int

15

maximizeMoves:Gets the maximun value for the computer's cholue Aeader of
the function is:

maximizeMoves::Board -> PColor -> Int -> Int -> Int -> (Board ->
Int) -> TreeMoves -> Int -> Int -> Int -> Int

maximize: Gets the maximum value for the computer's chdibe. header of the
function is:

maximize::Board -> PColor -> Int -> Int -> Int -> (Board -> Int) ->
Int

minimizeMoves: Gets the minimum value for the player's choicee Teader of
the function is:

minimizeMoves::Board -> PColor -> Int -> Int -> Int -> (Board ->
Int) -> TreeMoves -> Int -> Int -> Int -> Int

minimize: Gets the minimun value for the player's choices fibader of the
function is:

minimize::Board -> PColor -> Int -> Int -> Int -> (Board -> Int) ->
Int

minimaxMoves: Gets the best move for the computer. The headéediinction
Is:

minimaxMoves::Board -> PColor -> Int -> Int -> Int -> (Board ->
Int) -> TreeMoves -> Int -> Int -> Int -> [Position] -> [Position]

minimax: Gets the best move for the computer. The headiéedtinction is:
minimax::Board -> PColor -> Int -> Int -> Int -> [P osition]

makeAlMove: Executes a list of moves for the computer. Thaelbeaf the
function is:

makeAlMove::Board -> [Position] -> Board

getLastMoveFromListLast: Gets the last position inside the list. The headdne
function is:

getLastMoveFromListLast::[Position] -> Position -> Position

getLastMoveFromList: Transforms a list of moves into a LastMove streetd’he
header of the function is:

getLastMoveFromList::[Position] -> LastMove

aiMove: Calculates and executes the best move for the etem@ he header of the
function is:

aiMove::Board -> Config -> (Board, LastMove)

16

« execMove:Executes a player's move inside the board. Thedned the function is:

execMove::Board -> PColor -> Position -> Position - > (Board, Int)

* moveEx: Executes a player's move inside the board. Thednexd the function is:

moveEx::GameData -> Position -> Position -> GameDat a

* move: Executes a player's move inside the board. Theened the function is:

move::GameData -> Position -> Position -> GameData

3.3.- Other files

Composed by other two fileBata.hs andLogic.hs.

3.3.1.- Checkers.hs

This file is the main file of the game. When loagadd when called the function main,
we initialize a new kernel and enter into the gamaen loop

3.3.2.- Checkers.hs

This file is the main file of the game. When loadaad when called the function main,
we initialize a new kernel and enter into the ganan loop

Functions:

» debugPiece:This function shows the content of a Piece valliee header of this
function is:

debugPiece::Piece -> 10 ()

e debugSquare:This function shows the content of a Square valte. header of
this function is:

debugSquare::Square -> 10 ()

» debugPosition: This function shows the content of a Position gallhe header of
this function is:

debugPosition::Position -> 10 ()

e debugBoard: This function shows the content of a Board valtee header of this
function is:

17

debugBoard::Board -> 10 ()

« debugConfig: This function shows the content of a Config valliee header of this
function is:

debugConfig::Config -> 10 ()

» debugGameData:This function shows the content of a Kernel vallige header of
this function is:

debugGameData::GameData -> 10 ()

3.4.- Dependency Map

Console Game

4 .

Console hs Daata hs

4

v

K Utals has _// -;-_ : \ Logie b

Checkers hs Diebug hs
Almports B

>

4.- Game’s proof of concept and behaviour
4.1.- Game initialization

Initially, Checkers.hs is the .hs file which is exged to be loaded into WinHugs.
Checkers will paint on the screen a small helparg will load the main loop.

18

The main loop is a function located within Consade . This function has two options:
exit from the application, or it calls itself withnew kernel state.

When recalled, we will send a message to doCmdnabiS a function that will execute

the last command introduced, calling the auxilfaryction doCmdEXx.
Checkers.hs is loaded

BEGINNING
Y
Moving
New Game
Help P mainLoop

User petition
Atte ndCommand

Should we

) W "

Figure 4.1.: Game engine’s behaviour diagram

ENDING

4.2.- The kernel concept

The kernel concept has been introduced to repréisemiternal state of the entire
application.

19

Kernel Composition

Game Data Command
Board LastMove Config CmdHelp
CmdLook Beard
’ ’ —— CmdRestart
BoardRow {int, int) Level PColor | it
. 3 UK CmdNone
Square i"“"'-"l White CmdMNewGame Peolor Level
Square Empty Mediuw | Mack White Easy
Squarelnvalid Hard Black Medium
Square Piece Hard
PIype | PColor CmdMove Position Position
N:E".m..” White (int, int) {int, int})
King Black

Of course, kernel status is changed whenever weugee any action involving one of

the kernel's attribute. More specifically, evempé we execute a new command, kernel
status changes.

20

4.3.- Movement logic

Here is an explanation about the movement logayd?ls movement control is quite
simple: we just take a look on some conditionsviausate the validity of the movement

LMOVENENT EEQUEST

I a valid
Piece”

EMNDING (FAILTUREE)Y

A

[5 a vald

movement’

EMNDIUNG (ERFOLGY

The IA Logic for the movement follows a more comppeocess. We use a minimax
methodology to calculate the best option of theVihat is exactly a minimax strategy?
Let’s take a look:

21

4.3.1.- Minimax strategy (from Wikipedia)

A minimax algorithm is a recursive algorithm forodsing the next move in an n-player
game, usually a two-player game. A value is assediaith each position or state of
the game. This value is computed by means of dipogvaluation function and it
indicates how good it would be for a player to keti@at position. The player then
makes the move that maximizes the minimum valué@position resulting from the
opponent's possible following moves. If it is Alsrt to move, A gives a value to each
of his legal moves.

A possible allocation method consists in assigairegrtain win for A as +1 and for B
as —1. This leads to combinatorial game theoryeagldped by John Horton Conway.
An alternative is using a rule that if the resdlaonove is an immediate win for A it is
assigned positive infinity and, if it is an imme@avin for B, negative infinity. The
value to A of any other move is the minimum of #adues resulting from each of B's
possible replies. For this reason, A is calledntagimizing player and B is called the
minimizing player, hence the namminimax algorithm. The above algorithm will assign
a value of positive or negative infinity to any gims since the value of every position
will be the value of some final winning or losinggition. Often this is generally only
possible at the very end of complicated games asathess or go, since it is not
computationally feasible to look ahead as far ascttimpletion of the game, except
towards the end, and instead positions are givete fvalues as estimates of the degree
of belief that they will lead to a win for one péyor another.

This can be extended if we can supply a heuristduation function which gives
values to non-final game states without considealhgossible following complete
sequences. We can then limit the minimax algorithiook only at a certain number of
moves ahead. This number is called the "look-aheadasured in "plies”. For example,
the chess computer Deep Blue (that beat Garry Kagpkboked ahead 12 plies, then
applied a heuristic evaluation function.

The algorithm can be thought of as exploring théesoof agame tree. Theeffective
branching factor of the tree is the average number of childrenaghenode (i.e., the
average number of legal moves in a position). Tumalyer of nodes to be explored
usually increases exponentially with the numbepligs (it is less than exponential if
evaluating forced moves or repeated positions).ntmber of nodes to be explored for
the analysis of a game is therefore approximatedybranching factor raised to the
power of the number of plies. It is therefore ingti@al to completely analyze games
such as chess using the minimax algorithm.

The performance of the native minimax algorithm robaymproved dramatically,
without affecting the result, by the use of alplegialpruning. Other heuristic pruning
methods can also be used, but not all of them aieagteed to give the same result as
the un-pruned search.

22

What is alpha-beta pruning?

Alpha-beta pruning is a search algorithm that reduces the numbeodés that need

to be evaluated in the search tree by the miningorithm. It is a search with

adversary algorithm used commonly for machine pigyf two-player games (Tic-tac-
toe, Chess, Go... Checkers, etc.). It stops completalluating a move when at least
one possibility has been found that proves the ntov® worse than a previously
examined move. Such moves need not be evaluatibefuAlpha-beta pruning is a
sound optimization in that it does not change #sailt of the algorithm it optimizes.
Here we can see a schema of a minimax tree ugph@-dleta pruning to improve the

performance of the algorithm:

3 (6

5 3 6

g

® CS{

Sbu il

9

7

5

9

8

MAX

MIN

MAX

MIN

MAX

When evaluating from the left to the right sidegyggd out sub trees doesn’t need to be
explored, since we know the group of subtrees gi#ié value of an equivalent subtree
or worse, and as such cannot influence the firsllte

23

Focusing on our particular application, when thenan movement has been executed,
there is a call irxecMove function toaiMove. And here begins the entire Al engine

~Function called after the last human movement
-Color evaluation
aiMove -Level evaluation

-Evaluation for the mmunun plaver's chowe
-Evaluatiwm for the maamum Al's chowe
= Alpha-Beta prunmg

I
evahatim

-Decon's deplovment
-hovement kunched
Decisin -Rernel status updated

Human logic

24

